AMENDMENT
TO THE COMMITTEE PRINT TO H.R. 2986

Page 1, line 9, strike “(n) through (r)” and insert “(p) through (t)”.

Page 13, line 15, strike “(r)” and insert “(t)”.

Page 14, line 8, strike all that follows through page 15, line 13, and insert the following:

1 SEC. 3. CRITICAL MINERAL RECYCLING AND REUSE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM.

The United States Energy Storage Competitiveness Act of 2007 (42 U.S.C. 17231) is amended by inserting after subsection (m), as so designated by section 2, the following:

“(n) CRITICAL MINERAL RECYCLING AND REUSE RESEARCH, DEVELOPMENT, AND DEMONSTRATION PROGRAM.—

“(1) DEFINITIONS.—In this subsection:

“(A) CRITICAL MINERAL.—The term ‘critical mineral’ means any of a class of chemical elements that have a high risk of a supply disruption and are critical to one or more new, en-
ergy-related technologies such that a shortage
of such element would significantly inhibit
large-scale deployment of technologies that
store energy.

“(B) RECYCLING.—The term ‘recycling’
means the separation of critical minerals em-
bedded within an energy storage system
through physical or chemical means and reuse
of those separated critical minerals in other
technologies.

“(2) ESTABLISHMENT.—Not later than 180
days after the date of enactment of the BEST Act,
the Secretary shall establish a research, develop-
ment, and demonstration program of recycling of en-
ergy storage systems containing critical minerals.

“(3) RESEARCH, DEVELOPMENT, AND DEM-
ONSTRATION.—In carrying out the program, the
Secretary may focus research, development, and
demonstration activities on—

“(A) technologies, process improvements,
and design optimizations that facilitate and
promote recycling, including—

“(i) improvement of efficiency and
rates of collection of products and scrap
containing critical minerals from consumer, industrial, and other waste streams;

“(ii) separation and sorting of component materials in energy storage systems containing critical minerals, including improving the recyclability of such energy storage systems;

“(iii) safe storage of energy storage systems, including reducing fire risk;

“(iv) safe transportation of energy storage systems and components; and

“(v) development of technologies to advance energy storage recycling facility infrastructure, including integrated recycling facilities that can process multiple materials;

“(B) research and development of technologies that mitigate emissions and environmental impacts that arise from recycling, including disposal of toxic reagents and byproducts related to recycling processes;

“(C) research and development of technologies to enable recycling of critical materials from batteries in electric vehicles;
“(D) research on and analysis of non-technical barriers to improving the transportation of energy storage systems containing critical minerals; and

“(E) research on technologies and methods to enable the safe disposal of energy storage systems containing critical minerals, including waste materials and components recovered during the recycling process.

“(4) REPORT TO CONGRESS.—Not later than 2 years after the date of enactment of the BEST Act, and every 3 years thereafter, the Secretary shall submit to the Committee on Science, Space, and Technology of the House of Representatives and the Committee on Energy and Natural Resources of the Senate a report summarizing the activities, findings, and progress of the program.

“(o) DEFINITIONS.—For purposes of subsections (l), (m), and (n), the following definitions apply:

“(1) ENERGY STORAGE SYSTEM.—The term ‘energy storage system’ means a system, equipment, facility, or technology relating to the electric grid that—
“(A) is capable of absorbing energy, storing such energy for a period of time, and dispatching such energy after storage; and

“(B) uses a mechanical, electrical, chemical, electrochemical, or thermal process to store such energy, or any other process that the Secretary determines relevant.

“(2) ISLAND.—The term ‘island’ means one or more distributed generators or energy storage systems that continues to power a location in the absence of electricity from the electric grid.

“(3) MICROGRID.—The term ‘microgrid’ means an integrated energy system consisting of inter-connected loads and distributed energy resources, including generators and energy storage systems, within clearly defined electrical boundaries that—

“(A) acts as a single controllable entity with respect to the grid; and

“(B) can connect and disconnect from the grid to operate in either grid-connected mode or island-mode; or

“(C) can operate in the absence of the grid.

“(4) NATIONAL LABORATORY.—The term ‘national laboratory’ has the meaning given the term in